Exploring the Diversity of Bacillus whole genome sequencing projects using Peasant, the Prokaryotic Assembly and Annotation Tool
نویسنده
چکیده
Background: The persistent decrease in cost and difficulty of whole genome sequencing of microbial organisms has led to a dramatic increase in the number of species and strains characterized from a wide variety of environments. Microbial genome sequencing can now be conducted by small laboratories and as part of undergraduate curriculum. While sequencing is routine in microbiology, assembly, annotation and downstream analyses still require computational resources and expertise, often necessitating familiarity with programming languages. To address this problem, we have created a light-weight, userfriendly tool for the assembly and annotation of microbial sequencing projects. Results: The Prokaryotic Assembly and Annotation Tool, Peasant, automates the processes of read quality control, genome assembly, and annotation for microbial sequencing projects. High-quality assemblies and annotations can be generated by Peasant without the need of programming expertise or high-performance computing resources. Furthermore, statistics are calculated so that users can evaluate their sequencing project. To illustrate the computational speed and accuracy of Peasant, the SRA records of 322 Illumina platform whole genome sequencing assays for Bacillus species were retrieved from NCBI, assembled and annotated on a single desktop computer. From the assemblies and annotations produced, a comprehensive analysis of the diversity of over 200 high-quality samples was conducted, looking at both the 16S rRNA phylogenetic marker as well as the Bacillus core genome. Conclusions: Peasant provides an intuitive solution for high-quality whole genome sequence assembly and annotation for users with limited programing experience and/or computational resources. The analysis of the Bacillus whole genome sequencing projects exemplifies the utility of this tool. Furthermore, the study conducted here provides insight into the diversity of the species, the largest such comparison conducted to date.
منابع مشابه
A computational genomics pipeline for prokaryotic sequencing projects
MOTIVATION New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant res...
متن کاملProkka: rapid prokaryotic genome annotation
UNLABELLED The multiplex capability and high yield of current day DNA-sequencing instruments has made bacterial whole genome sequencing a routine affair. The subsequent de novo assembly of reads into contigs has been well addressed. The final step of annotating all relevant genomic features on those contigs can be achieved slowly using existing web- and email-based systems, but these are not ap...
متن کاملCAAT-Box, contigs-Assembly and Annotation Tool-Box for genome sequencing projects
MOTIVATION Contigs-Assembly and Annotation Tool-Box (CAAT-Box) is a software package developed for the computational part of a genome project where the sequence is obtained by a shotgun strategy. CAAT-Box contains new tools to predict links between contigs by using similarity searches with other whole genome sequences. Most importantly, it allows annotation of a genome to commence during the fi...
متن کاملNCBI prokaryotic genome annotation pipeline
Recent technological advances have opened unprecedented opportunities for large-scale sequencing and analysis of populations of pathogenic species in disease outbreaks, as well as for large-scale diversity studies aimed at expanding our knowledge across the whole domain of prokaryotes. To meet the challenge of timely interpretation of structure, function and meaning of this vast genetic informa...
متن کاملThe Pattern of Linkage Disequilibrium in Livestock Genome
Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017